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Hadron magnetic moments are considered in the framework of the spinor 
strong interaction theory for hadron spectra proposed by the author. Expres- 
sions of magnetic moments of ground-state hadrons are derived. These differ 
from the conventional ones in that they are no longer phenomenological and are 
basically relativistic. Pseudoscalar mesons have no magnetic moment. Charged 
vector meson magnetic moment values are given. The magnetic moment opera- 
tors operate in the internal space, so that the ground-state octet baryons have 
the same spin-space symmetry, including the A. A formula for the ground-state 
octet baryon magnetic moment is derived from the basic spinor strong interac- 
tion baryon equations previously given, essentially without approximation and 
in a way analogous to the way in which the electron magnetic moment is 
derived. 

1. I N T R O D U C T I O N  

One o f  the ma in  successes o f  the qua rk  mode l  o f  ha d rons  o f  the 1960s 
is its semiquant i t a t ive  account  o f  the g round-s t a t e  octet  ba ryon  magnet ic  
m o m e n t s  (Lich tenberg ,  1978, Par t ic le  D a t a  G r o u p ,  1992). The a p p r o a c h  is, 
however ,  bas ical ly  phenomeno log ica l  and  nonrelat ivis t ic .  Q u a r k  magnet ic  

momen t s  are assumed to be eigenvalues o f  Di rac  magnet ic  m o m e n t  opera-  
tors  in spin space. Baryon  magne t ic  momen t s  are  ob ta ined  as expec ta t ion  
values o f  the sum o f  three such opera to r s ,  one for  each quark ,  over  the 
ba ryon  spin states. A l t h o u g h  numer ica l  agreement  is acceptable  at  this 
level, there  are  two basic difficulties. 

In the first place,  the spin symmet ry  o f  the A has to be different f rom 

tha t  o f  the o the r  seven octet  ba ryon  member s  in o rde r  to d is t inguish it 
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from the y o. This also holds for some charmed baryons. Second, the effect 
of quark motion on baryon magnetic moments is excluded. Quantum 
Chromodynamics (QCD) introduced in the mid-1970s as a theory for strong 
interactions has been unsuccessful in making progress and improving upon 
predictions in this connection. 

The purpose of this paper is to remove these two basic difficulties and 
present derivations of hadron magnetic moments essentially without approx- 
imation in a way analogous to that via which the electron magnetic moment 
is obtained. This is carried out in the framework of the recently proposed 
spinor strong interaction formalism for mesons (Hoh, 1993) and baryons 
(Hoh, 1994a) (hereafter referred to as I and II, respectively). The so-ob- 
tained magnetic moment formulas are no longer phenomenological and are 
basically relativistic. 

This spinor strong interaction formalism differs fundamentally from the 
conventional QCD-oriented approaches. It is so named because it is based 
upon manipulations of van der Waerden's spinor having two components 
rather than Dirac's bispinor, which contains four components. Linear 
confinement for mesons and harmonic confinement for baryons arise 
naturally from the covariant basic equations without approximation. Radial 
equations for hadron wave functions in the relative space of the quarks are 
given. Gauge invariance of the meson equations further predicts that the 
Higgs particle is unnecessary, resolves the so-called U(1) problem, and links 
strong and electronweak interactions (Hoh, 1994b). 

In Section 2, the basic meson equations of I are extended to include an 
external electromagnetic field. The basic equation for obtaining meson 
magnetic moments is derived. Considering the magnetic moment energy to 
be a perturbation, the zeroth-order solutions to the meson equations given 
in I are briefly reviewed in Section 3. Meson magnetic moments are then 
obtained in Section 4. 

In Section 5, the basic baryon equations of II are modified and 
analogously extended to include an electronmagnetic field. A basic equation 
for obtaining baryon magnetic moments is derived. This equation is further 
treated and prepared in Section 6 so that a formula for the ground-state 
octet baryon magnetic moments is obtained in Section 7. In Section 8, this 
formula is expressed in terms of radial baryon wave functions which 
contains the effects of quark motion and masses. Dropping such motion, the 
"static quark" octet baryon magnetic moments are evaluated. 

2. BASIC MESON EQUATIONS 

To consider the meson magnetic moment, the basic quark equations 
(I5.1)-(I5.2) are generalized to include a U(1) gauge field via 



Hadron Magnetic Moment 2353 

~ --+ D ~ = 8 ~ + iqo p (q ,  8 /Sz~)A "6(xl ) (2.1 a) 

8n~f -+ D *~f = 311ef - iq*p (Zu, c3/~Zll)A~f(Xn ) (2.1 b) 

where A denotes an external electromagnetic field. The constant charges 
multiplying it have been generalized to internal operators operating upon 
the quark internal functions dependent upon the complex internal coordi- 
nates zl and zn associated with the quark and antiquark at the space-time 
coordinates xl and Xn, respectively. The symbols are defined in I. 

Equations (I5.1)-(I5.2) generalized according to (2.1) are multiplied 
together following the procedure of Section 5 of I. The resulting general- 
ized meson equations that replace (I5.4) read 

ogb)~f~(Xl, XII)~Pr(ZI, Zll)O~ifo = (~bp(Xl, XII) --  mgop)~(xl, XII)~Pr(ZI, ZII) 

(2.2) 

b z D*ea Ok:b~lo(Xl, Xn)~Pr(Zl, II) n = (4)p(Xl, XH) --  m2op)Zff(xi, Xn)~Pr(Zl, ZIl) 

Here, Z and r are the space-time meson wave functions, ~Pr the normalized 
internal meson functions, p and r the quark and antiquark flavors, respec- 
tively, m2o p the internal mass-squared operator (I5.3b), and q~p the quark- 
antiquark pseudoscalar interaction (I4.8b). Equation (2.2) is invariant 
under the U(1) gauge transformation 

Z~(XI,  XII)"-+ Z~(XI,  Nil) exp(iqop(Zl, 8/Szl)~Oq(Xl)) 
(2.3) 

A ~6(x 1) --+ A ~6(xl) -- q~ ~68q (x 1) 

where Cpq is a local phase. Multiplication of (2.2) by ~p~(zl,zn), the 
complex conjugate of the internal meson functions ~Pr(Zl, Zn), leads to 

(~6  + iqxAa6(xi))zf~(xl, Xli)(8llfO + iqnAfo(xn) ) 

((~p (Xl, Xl,) 2 a = - Mm)~be(xl, Xn) (2.4a) 

(ale+ + iqiAe.b(Xl))~kbe(x,, Xn)(af( + iqnAOa(Xn)) 

(cb, , (x , ,  x l , )  ~ d = - M, . )Ze(x l ,  xn)  (2.4b) 

Here, 

q, = ~p" (Z,, zn)qop(Zl, 8 /Szl)~Pr(zl, z . )  (2.5a) 

qn -- ~p'(zl, * = Zn)qop(Zli, 8/&n)~Pr(zi, Zn) = q* (2.5b) 

~pr(Z,, ZII)~Pr(Z,, Z11 ) : 1 (2.6) 

zl and z n denote zf and Z.r, etc., and are normalized complex vectors 
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satisfying the orthonormality relations 

z P  ZIr - -  P - ZuZnr = 6Pr, z~zHr = 0 

The quark charge operator, analogous to the quark 
(I9.3a), is of the form 

qop(z,, a /Oz,) = ~ q~(z~i O /Oz[ - z,v O /O21v ) (2.8a) 
v 

where qv is the charge of a quark with flavor v; 

qt = q4 = 2e/3, q2 = q3 = q5 = - e / 3  (2.8b) 

Equation (2.8a) also holds for I - , I I .  
Operation of (2.4a) by the operator on the left of (2.4b) yields 

(~31~.~ + iq, A~.~(x,))(O~ 6 + iqlA~6(x~)) 

x (0 ~ + iqu A a~ n))(Ollef + iqn A~r(Xn))Zf6(xl, XII) 

((oe(xl ,  x n )  2 a , (2.9a) = - Mm)Z~(Xl ,  XII) "~- R M 

t �9 d~ RM = [~be(xl, xn) ,  (Ou~ + tq lA~(x l ) ) (On  + iqnAa~(Xn))lP~(xl,  Xu)] (2.9b) 

where [A, B] = A B -  B A  and M 2 is the eigenvalue of m2o p of (I5.5). 
The external field A produces an effect on the quarks that is in general 

much weaker than that due to the interquark potential q~e. It can therefore 
be regarded as a first-order perturbation. 

(2.7) 

mass operator of 

3. Z E R O T H - O R D E R  S O L U T I O N S  T O  T H E  M E S O N  E Q U A T I O N S  

Neglecting at first the electromagnetic field A in (2.4), we treated the 
zeroth-order meson equations in the rest frame in I. Some relevant nota- 
tions and results are reproduced below for reference. First, X is decomposed 
into a ringlet and a triplet, and laboratory and relative coordinates are 
introduced. We have 

~#~r (x l ,  Xll ) : j(~)(Xl, Xll)l~bf--t-I~ljfZt(Xl, Xll ) (3.1) 

X = X ~ = ( 1  -- am)X~ + amXfl, X = XV = X~I -- X~{ (3.2) 

where a,, is a constant. A plane wave ansatz is made, 

)~(xi, Xu) = e-i~:,xv)~'o(X), )C'(xl, xl l)  = e - i s%x"Z ' (x )  (3.3) 

where K,  = (E0, - K), Eo is the total energy, and K is the momentum of  the 
meson. The same expressions hold for Z --> q'. Solutions in the relative time 
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x ~ and space x of  the form 

~o(x) -- e+~176 q~ = ~6, O', X6, X' (3.4) 

are sought. Here, ~o o is the relative energy of  the quarks. The choice 
am -- 1/2 + (ao/Eo was then made. Further treatment was limited to the rest 
frame K = 0 in which the am and co o terms cancel. It was shown that 
Z6(x) = - $ ~ ( x )  represents the wave function of  the pseudoscalar mesons 
and X'(x) = O'(x) that of  the vector mesons. 

4. MES ON MAGNETIC M O M E N T  

Return to (2.9) and consider the meson at rest with an energy 

E = E0 + ElM (4.1) 

where Elm is due to the electromagnetic field A and hence is also of  first 
order. Since A varies little inside the hadron, let AU(xl) = AU(xn) = Au(X). 
For simplicity, the electrostatic potential is put to zero and the vector 
potential is taken to be independent of  the laboratory frame time, i.e., 
Au(X) = (0, A(X)). 

The pseudoscalar meson has only one wave function component X~(x) 
at rest and therefore has no magnetic moment. There are no data to verify 
this result. 

For  the vector mesons at rest, the relative energy is COo = 0 in a 
quantized treatment (Hoh, 1994b), so that (2.9a) can be put in the form 

t~oa(E o -4- ElM ) -- Oi. a + ~ Ox~ a -4- iqtA+~,(X) 

( 2  l o~+iq ' tA~f(X))  ~ • 6++(Eo + E,M) + ~++ 

= (ML - r  (N))26+d O'(x) + RM (4.2) 

Here, R u  is R~t with its indices appropriately lowered and raised, 6 denotes 
the Kronecker delta, and ~ and 0x are differentiations with respect to x and 
X, respectively. The exponential factor of  (3.3) has been removed from 
(4.2). Terms to first order in E~M are collected to yield 

1E1M(E~ + 4EoA)a+dO'(x) (4.3a) 

where A = (0/0x) 2. Only terms to first order in A in (4.2) that split the 
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different , ' ( x )  components contribute to the magnetic moment. The sum of 
such terms is 

l (~ E2 + A)[-ql(6~;H)(6bad/') -qll(6afH)(6f~.df)] (4.3b) 
2 

where H = H(X)=  ~3 x x A(X) is the external magnetic field. Let H(X) = 
(0, 0, H3(X)), 

Oe.ad/'(x) = (~k~3 + ft~3 ) (4.4) 

and denote the spin component splitting parts of EtM by ElM• and E~M3 
associated with ~b• and ~k3, respectively. Equation (4.3) yields 

EIM3~/3 = 0 (4.5a) 

E~M~(1 + 4A/E2)ff_z_ = +H3(X)(ql-kqu)(1 + 4A/E02)~. (4.5b) 

The A terms associated with quark motion cancel out and the magnetic 
moment of the vector meson is 

ql + qH (4.6) 
#M = 2E ~ 

The internal functions of the positively charged vector mesons are given by 
(Ig.la), which with (2.6), reads 

~v,. = ~ (Z~ ZIIr + Zl,.Z~l) (4.7) 
w 

For p+, K *+, D *+, D *+ , and B *+, the corresponding flavor indices are 
(p, r) = (1, 2), (1, 3), (2, 4), (3, 4), and (1, 5), respectively. With these values, 
(4.7), (2.5), (2.7), and (2.8)yield simply ql = qH = 1. The magnetic moments 
of these vector mesons are inversely proportional to their masses and are, 
in units of proton magneton, 2.44, 2.1, 0.936, 0.889, and 0.352, respectively. 

The negatively charged companions of these five vector mesons have 
magnetic moments of opposite sign. For neutral vector mesons, the upper 
and lower indices of each term in their internal functions are the same, as 
is shown for two cases in (I9.7). Therefore, q~ = qu = 0 and their magnetic 
moment vanishes. These results can presently not be verified, since no data 
exists. 

5. BASIC BARYON EQUATIONS 

Equations (113.6) and (I13.8) have been proposed to account for 
baryon spectra. Under mutual scalar quark-quark interaction, a suitable 
description of baryon spectra was obtained when two of the quarks in the 
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baryon are merged into a diquark. In this way, the basically three-body 
problem was reduced to a two-body one. 

The quarks, however, do not have to respond to the influence of an 
external electromagnetic field in the same way. Instead, the three pairs of 
quark equations (II2.1)-(II2.3), generalized to include internal quark 
functions according to Section 3 of II, are further modified to include 
electromagnetic fields via substitutions of the type (2.1a). Applying the 
same multiplication and generalization procedures as in Section 2 of II 
without collapsing two quarks into a diquark, we obtain the generalized 
baryons equations 

a~ g~/ f Dl DmDI!r~Z6~ (x~, xm,  xH)~PSq(zi, Zln, Zn) 

= -i(m3op + e~s(Xl, xm,  xll))~q~(x~, xni, xll)~PSq(zl, z,ii, zn) (5.1a) 

Dl6cDnl~kD~dt~"*~(xl, Xlll, xn)(P~q(zl, zm, zn) 

= --i(rn3op + ~s(Xl, xnt, XH))Z6~d(Xl, Xm, Xn)~P~q(zi, Zm, ZII) (5.1b) 

which replaces (II3.6) and is the baryon counterpart of (2.2). Here, Z and 
are the baryon wave functions, and ~bs is the quark-quark scalar 

interaction of (II2.8) without the x n ~ x r  merging to form diquarks, 
analogous to the expression intervening between (II2.4c) and (Ii2.5a). m3o p 
is the internal mass-cubed operator (II3.5) generalized to contain a third 
internal coordinate z~H. 

Analogous to the transition of (2.2) to (2.9), (5.1) is multiplied by 
~p~u(z~, zH~, ZH), the complex conjugate of the ~ in (5.1). Equation (2.5a) is 
modified for the baryon case according to 

ql = ~p~q(Zl, znl, zH)qop(Z~, a /Ozl)~P~q(zl, ZIH, ZII) (5.2) 

Similar equations hold for I ~ III and II in qop. Analogously, (2.6) becomes 

~p~q(Z,, zm, zn)~P~q(zl, znl, zn) = 1 (5.3) 

The so-modified (5.1a) is operated upon by the operator on the left of the 
so-modified (5.1b) to produce 

D, ~,a~n, l r~ tg f t  l r ' , /kO lr~t . .  f t ' . .  $ J  l J  l . J  l . J  Z J  ~ .  lt~a l I l ldg  I l l  II ll~f/~t~/~ ~, 1 X I I I , X l I )  

= --(M~b + Os(Xl, xni, Xli))2Z~.a~(Xi, xm,  xH) + Rs (5.4a) 

Rs = -i[C~s(X,, xm,  x~,), D~e,D~nagD'~g~(x,,  x,i,, xn)] (5.4b) 

where 

D~,:~ = Ou., + iq~Aea(x,) (5.5) 

together with similar relations for I ~ I I I  and II. Further, M~ is the 
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eigenvalue of m3o p and can be verified to have the same values as in 
(II8.7), (II8.11b) and (II8.11c) obtained with the z m ~ z x  merging there. 

6. FURTHER D E V E L O P M E N T  OF THE B A R Y O N  E Q U A T I O N S  

Introduce the baryon laboratory coordinate X and qua rk -qua rk  
relative coordinates x and y: 

y = Xl l  1 - -  X I ,  Xl,ll I = (1 -- b)x  I + bXll I (6. la) 

X = ( 1 - a)x l ,m + axl l ,  x = xn  - xl (6.1b) 

where a and b are constants. In the x l ~ i ~ x ~  limit, (6.1) reduces to the 
form of (3.2). Similar to (I5.1), the plane wave ansatz in the laboratory 
frame is made 

~tj~f(Xl, X I I I ,  X l l  ) = e iKI~X~t~t~f(x , y )  (6.2) 

where K~ now refers to baryons. Solutions in the relative times x ~ and yO 
of  the form 

z6~f(x ,  y) = exp[i(~Oo x~ + Ogoyy~ y) (6.3) 

are sought, analogous to (I6.5). Corresponding expressions for ~b 
analogous to (6.2)-(6.3) also hold. To remove the relative time depen- 
dences from the time derivatives, we make the choice 

a = d + c o o / E  o, b = c  +Ogoy/Eo(1 - d )  (6.4) 

corresponding to the choice of a m in Section 3. Here, c and d are 
constants. 

Further treatment is confined to the rest frame K = 0, as in Section 5 
of II. In the absence of the external electromagnetic field A,  (5.1) and 
(5.4) are considered, parallel to Section 3, as zeroth-order equations which 
have been treated in this frame in the xm--*Xl and z m ~ z  I limits in II. 
The radial equations for the ground-state, spin-l/2 doublets and spin-3/2 
quartets as well as their solutions at 0 and c~ relative distances have been 
obtained. Since no data on spin-3/2 baryon magnetic moment are avail- 
able, only those components of (6.3) associated with the ground-state, 
spin-l/2 doublets are of interest, i.e., 

Zi i 2 = - 2Zi21 = _ 2Z2i 1 (6.5a) 

g~ t = -- 2gi~ 2 = - 2Z2i 2 (6.5b) 

according to (II2.6), putting the spin-3/2 quartet components to zero. 
Analogous expressions hold for ~,. 
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7. BARYON MAGNETIC M O M E N T  

Let 

E = E0 + EIB (7.1) 

where Eo is now the rest mass o f  the ground-state,  spin-l /2 baryons and 
EIB is due to the electromagnetic field A and hence is also of  first order.  
The same simple choice of  A in Section 4 is also made here. 

Equat ion  (5.4) is put  in a form analogous to (4.2): 

[i( 1 - d)( 1 - c)(Eo + EIB)Se, + ( 1 -- a)( 1 -- b)Oxea 

+ iq, Ae . (X)  - (1 - b)O~a - -  Oyi 'a]  

x [i(1 - d)(1 - c)(E o + E , . ) 6  ~6 + (1 - a)( l  - b)O~ '~ 

+ iq~Aa6(x) (1 - b)O '*~ - 3~ 6] 

• [i( 1 - d)c(Eo + E,a)6& + ( 1 - a)bOxdg 

+ i q m A & ( X )  - bOdg + ~y~tg] 

• [i( 1 -- d)c(Eo + E,s )6  g~ + ( 1 - a)b~ g~ 

+ iq.iAg (X) - + Ogq 

• [id(Eo + E~8)6 k~ + ad~x ~ + iqnAk~ + 0 k~ 

x [id(E o + E~8)f~U + adxof + iqniAof(X) + c30f]z~f(x, y) 

= _ (M 3 + 4~s(X, y))2Z~.dk(x ' y) + RBei(Eo + e,,)xO (7.2) 

where Oy refers to differentiation with respect to y and a reduction similar 
to that  leading from (II2.10) to (II5.3) has been made for ~bs. 

By analogy to coo = 0 in Section 4, the relative energies co o and co0y are 
assumed to vanish in the rest frame. This assumption can perhaps be 
removed in a quantized treatment,  analogous to that  for  mesons (Hoh,  
1994b). These relative energies in the C3x terms in (7.2) now drop  out. 
Collecting terms to the first order  in E~8 in (7.2), we can write the 
counterpar t  of  (4.3a) as 

2 2 f 4 2 I-" ,/ 1 ',~2 1 2 
6EisEo(1 - d)4d2(1 - c) c ~Eo + ~ L 2 t l  _ ~ )  + ~5]EoA 

1 + ~ [ 2 ( ( 1  1 '~2 // l ~4 ]____)/tZii2(X)" x 
d ) d )  +t~-d) _]A~iJ~tZ2~i(x)) (7.3a) 

The corresponding terms to first order  in A in (7.2) that  split (6.5a) from 
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(6.5b) are found to be 

[-[ 1 \2 1 ] 2 
(cq, + (1 -c)q,,,)H3(X)(1- d)3de(l -c)c Eg + l~1 _ ~ )  + ~ J E o  A 

2 . . 2  X 

+ ((1 --la)a,/'~ AA~(X't'JKZ~ ,x),l ! !~ --qnH3(X)(1 - d ) 4 d ( 1 -  c)2c2 

2 E2A + AA (7.3b) 
x E~ q-- (1 _ d)2  1 - ~  -- Z:~' (x) / /  

Here, Eo is the eigenvalue of iO/3X ~ with X defined in (6.1b), which differs 
from the definition of X in Section 5 of II, which is of the form (3.2). 
However, these two definitions of X differ only by a constant and hence 
lead to the same E0. Further, Z is the zeroth-order ground-state baryon 
wave function in relative space, i.e., (6.5) with y--*0 in (6.1a). By (II2.6) 
and (II6.3) with l = 0, it becomes 

)~ii2(x) = --~Xof = go(r)Yooq- fo(r)Ylo (7.4a) 

4 4 _go(r)yo ~ + fo(r) Y~o (7.4b) 

where Y denotes normalized spherical harmonics, r = Ixl, and f0 and go are 
radial wave functions of the ground-state, spin-l/2 baryons determined by 
(116.8) -(116.9). 

Multiplying the upper and lower rows of (7.3) by (ziiZ(x)) * and 
(x~2~(x)) *, respectively, and integrating over x yields the ground-state, 
spin-l/2 baryon magnetic moment: 

1 I [ G  ( q~ +~!)k,-lq~,kn]/k~ (7.5) 
#s = 2Eo 3 1 - c 

1) ,[( 1 ( 1 ) ]  
ke=l+-~ l - d )  ~ - - - ~  +-~ Xl+~ 2 (l_2d)d + 1 - ~  Ka (7.6a) 

[(, )211 k~ = 1 + 1 - ~  +~--5 x~ + - ~c2 (7.6b) 

2 1 
kll --- 1 q (1 - d) 2 x~ + (1 - d) - - - - - ~  ~2 (7.6c) 

(7.7a) 

(7.7b) 
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The coordinate transformation constants c and d associated with the quark 
coordinates, which are not observable, are in principle arbitrary. Here, 
however, they may be determined from data or possibly from an energy 
minimization procedure similar to what follows. 

In (7.6), the departure of k from unity signifies the effects of quark 
motion. For the hypothetical case of quark at rest, A ~ 0  and (7.5) 
degenerates into 

1 iF 1 +~)__~] 
#Bo = ~T00 5 LTs-~ (lq_' c (7.8) 

Let (7.3a) in the absence of the A terms be maximized so that E~n is 
minimized. This leads to 

d = 1/3, c = 1/2 (7.9) 

which also puts q~, qn, and qm on an equal footing. This "static quark" 
approximation of the baryon magnetic moment is then 

1 
#BOrn = ~ 0  (ql + qm -- qn) (7.10) 

8. FURTHER EVALUATION OF BARYON MAGNETIC MOMENT 

To simplify notation, let zl = z, z m = v, Zil = U. The normalized inter- 
nal functions for ground-state, spin-l/2 baryons are (Lichtenberg, 1978; 
Carruthers, 1967) 

r = { 112 = ~ (2z Iv 1u2 - z t/)2u I - -  Z2.U IU 1) 

' V  

~ ( n )  = ~:~ 
r  = r r  ~--- r 

r = r ~-. 1 (2ZI/;2U 3 + 2Z2t) Iu 3 - -  Z2/ )3ul  ( 8 . 1 )  

- -  Z3~2 u 1 ~ Z 1~3U2 - -  Z3U IU2 ) 

1 ~(A) -- ~X23 = 2 (z~v3ul + z3v~u~ _ z ~v3u 2 - z3v ~u 2) 

~(~'~0) = ~331, ~ ( ~ - - )  = r 

For the cases in (8.1), (5.2) can be evaluated, making use of (2.8) together 
with the I ~ II and III cases and of (2.7), generalized to include zm. The 
results are given in Table I. 



2362 

Table I. 

Hoh 

q~, qn, qlll for Octet Baryons and the "Static Quark" Approximation of Baryon 
Magnetic Moments (7.10) in Proton Magnetons 

p n A E + 2; 0 g ~ ~ A s - ~o .7.- 

q,/e= 1/2 - 1/6 - 1/12 1/2 1/12 - l/4x/~ - 1/3 - 1/6 - I/3 
qm/e 

qn/e 0 1/3 1/6 0 - 1/6 1/2x/3 -- 1/3 1/3 -- 1/3 
/too., in 1 -2/3 --0.27 0.789 0.262 0.454 0.261 -0.476 --0.237 

(7.10) 

With (7.4), (7.7) can be put in the form 

8 ~o r2(go(r )Aogo(r )+~fo(r )Al fo (r )  ) (8.2a) = fo dr" 

( , )/ x2 = - -  dr .  r 2 AtA~fo(r) Eo 2 (8.2b) N,.d goAoAogo + 

3 2 2 3 l(l + 1) 
A1 = ~r 2 q r Or r 2 (8.2c) 

where N,.d is the conserved quantity given by (II6.9c): 

f: N,,d = 8Eg dr .  r 2 g~(r) + f2o(r) (8.2d) 

The octet baryon magnetic moment  is now given by (7.5), (7.6), (8.2), 
together with Table I. It can presently not be evaluated, apart  from the 
values of  c and d discussed below (7.7), because the radial wave functions 
fo and go in (8.2) have not been worked out presently. These functions 
depend upon the quark masses and hence vary among the octet members 
of  (8.1). 

I f  (7.9) is adopted, (7.5) and (7.6) can, noting q~ = qm, be simplified to 

1 2q~(1 + (45/4)tq + (81/4)x2) - qn( l  + (9/2)~c I + (81/16)x2) 
(8.3) 

/@ = 2Eo 1 + 9x~ + (81/2)x 2 

I f  quark motion is neglected, xt = / ~ 2  = 0,  and (8.3) reduces to (7.10), which 
in units of  the proton magneton is given by the last line in Table I. These 
values are roughly 1/3 of  the measured ones and hence also of  the predicted 
values of  the nonrelativistic model (Lichtenberg, 1978). This ~ 1/3 factor 
stems from the fact that the quark masses in the Dirac magnetic moment  
used in the literature are replaced by the baryon mass in (7.10). 

In summary,  the present approach and results differ from those of the 
literature (Lichtenberg, 1978) mainly in two aspects. In the first place, the 
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baryon magnetic moment arises from operation in the internal or z space 
(5.2) together with (8.1), contrary to operations in spin space. This makes 
it possible for the same spin space symmetry to be assigned to all ground- 
state baryons, contrary to the requirement that the A has a symmetry 
different from the other seven members of the octet (Lichtenberg, 1978). 
Second, the present hadron magnetic moment formulas (4.6), (7.5), (7.6), 
and (8.2) are derived from the basic covariant equations in I and II 
through a series of specializations and without any approximation of 
significance, exc pt for the assumption of zero relative energies above 
(7.3a). As was mentioned there, such an assumption was supported in the 
meson case and can perhaps be removed in a quantized treatment. The 
formulas here thus include relativistic effects of quark motion, unlike the 
phenomenological and nonrelativistic treatment in the literature. 
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